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1. INTRODUCTION

1.1 Background, The peak overpressure exiting from shock tubes, underground munition

storage site tunnel models, and full-scale sites has been documented and reported in Reference 1.

The criterion for structural damage is peak side-on overpressure.2 Although it is well known that

dynamic pressure and dynamic pressure impulse can be a primary damage mechanism, little is

known about the propagation of dynamic pressure ok. side of a tube or tunnel. The dynamic

pressure may cause more damage than the peak side-on overpressure. It is for this reason that the

current program has been conducted by the BRL with funding from the DOD Explosives Safety

Board.

1.2 Objectives. It is well known that a narrow, high-velocity flow exits shock tubes,3 but the

extent and magnitude are not well documented. One of the objectives of this study was to

document the dynamic pressure and impulse propagating outside the tube along the zero degree

axis. A second objective was to determine the width of the jet-flow by establishing off-set blast

lines in units of tunnel diameter. The first blast line was along the zero axis; the second blast line

was offset 1.5 tunnel diameters; and the third line was offset 3 tunnel diameters. We comment

here that stagnation pressure impulse is taken to be equivalent to the dynamic pressure impulse

because the side-on pressure impulse was found to be relatively insignificant in comparison.

A second method planned for mapping the magnitudes and extent of the jet-flow was to place

small cubes of different density material in and out of the flow path and, from the measured

displacement, to calculate the dynamic pressure impulse.

2. TEST PROCEDURES

2.1 Shock tube description. In order to conduct the experimental program in a controlled

environment, a large open area in a BRL warehouse was established as the test site. A platform of

2.54-cm plywood on 5-cm by 15-cm (2 in x 6 in) wooden studs was constructed to facilitate gauge

mounting and cable runs. A 2.54-cm (1-in) inside diameter, steel shock tube was selected because

it would be operative indoors without resorting to remote control. A sketch of the tube is shown

in Figure 1. The driver section of the tube was 150 cm (59 in), and the driven section was 133

cm (52.5 in). The wall thickness of the tube was 1.27 cm. If we consider a full size tunnel

diameter of 5 m, then this tube is a 1:197 scale.
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2.2 Instrumentation description. A schematic of the data acquisition-reduction system is

given in Figure 2. Quartz piezoelectric transducers were used to record both the side-on

overpressure and stagnation pressure versus time. The transducers are coupled through a power

supply and data amplifiers to a digitizing oscilloscope. On-site comparisons of the results were

made directly from the hard copies of the pressure versus time records. Final data processing and

generation of the overpressure and stagnation impulse versus time were completed with the

computer, printer, and plotter.

The stagnation pressure was recorded using a stagnation probe, as shown in Figure 3. This

type of transducer has been used successfully in many shock tube experiments. Because of the

steel wool placed inside the probe to dampen reflections, there is a finite rise-time associated with

the recorded stagnation pressure versus time record. This does not affect the primary flow

measurements because of the long duration.

2.3 Transducer layout. It was surmised that the jet-flow extended a considerable distance

beyond the tunnel exit but was rather narrow. Therefore, rather than mapping the area along

different radial lines extending from the tunnel entrance--i.e. 0, 5, 10, 15 degrees--the decision was

made to map with parallel lines. The parallel lines established were a zero offset, 1.5-tube diameter

offset, and a 3.0-tube diameter offset. The offsets and transducer locations are shown in Figure 4.

In reality, the offsets were achieved by moving the shock tube rather than by establishing new

gauge lines. The location of the transducers was planned to produce a peak side-on overpressure of

5 kPa to 8 kea at the last staion for the different exit pressures. That is 35 diameters for the

500-kPa exit pressure, 48 diameters for the 900-kPa exit pressure, and 72 diameters for the

1,800-kPa exit pressure. The side-on and stagnation pressure both could not be made at each

station on the same test; consequently, after one test, they were alternated, and a second test was

conducted.

2.4 Cube displacement method. One method for measuring the flow effects is to measure

the displacement of objects having known volume and density. A relationship between dynamic

pressure impulse, displacement, initial velocity, and cube parameters can be summed up in the

following equation.'

AIS = (w/CAg)_ D

(1)

• • I I I I I I I I3
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Figure 2. Schematic of data acquisition-reduction system.
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where

AIs = stagnation pressure impulse,* kPa-ms

w = weight, (if mass of cube is given in kilograms, then w = kg x g)

CD = Coefficient of drag, 1.2

A = cube face area, m2

g = 9.80 m/sec2

D = displacement, m

V0 = initial velocity, m/s

C = D/V, 2. s2/m"

For a given cube, W, CD. A, g, and 4C can be lumped into one constant and Equation I becomes

Als = k N-O. (2)

Along the zero offset line, the stagnation impulse (AT,) has been documented; therefore, when the

displacements for specific cubes are determined, the constant, k, can be obtained from

k = A, I D.

The values of k for the different cube materials will be given later.

3. RESULTS

3.1 Jet-flow generation. The jet-flow measured outside of a shock tube is a function of gas

dynamics occurring within the driver section and driven section. In Figure 5, a wave diagram has

been constructed to show the complicated interaction of the different gases and rarefaction waves.

Because the density of the gas within the driver is important, helium was chosen as the driver gas

to mqtch as closely as possible the density of the driver gas when an explosion occurs in a storage
cVa.r.

Stagnation pressure impulse and dynamic pressure impulse are considered the same in this report.

"C was determined to be a constant based on the model described in Reference 4.

7
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3.2 Transducer measurements. The peak side-on overpressure and stagnation pressure were

both measured at the tube exit and along the zero and offset lines, but, because of reflections and

blockage, they were not measured on the same shot. The primary objective of this program was to

document the magnitude and extent of the jet-flow, and, therefore, most of the effort was expended

in documenting the stagnation impulse. The station locations are shown in Figure 4. The two

transducer stations not shown in Figure 4 are Station T-1 , located in the side wall of the tube at

2.54 cm from the end to measure the exit pressure and impulse--and Station S-i, a pilot-tube-type

stagnation gauge with the sensing end 0.6 cm inside the exit to record the stagnation pressure and

impulse versus time exiting the tube. A sketch of gauge and location is shown in Figure 6.

3.2.1 Results along the zero line. The stagnation impulses (Al.) measured along the zero

offset line are listed in Table 1. The values were first adjusted to account for variations in the exit

impulse I,. Exit impulse values of 1,500 kPa-ms, 5,000 kPa-ms, and 11,000 kPa-ms were selected

as normalizing values. Therefore, if a stagnation impulse was measured from an exit impulse of

1,400 kPa-ms, it was multiplied by Iw 1,500/I, 1,400 or 1.07 to bring it up to the norm. The

values listed in TIable 1 are average values from more than one test, and are plotted in Figure 7.

It was noted that the stagnation impulse (AI,) values appeared to increase in proportion to the

increase in the exit impulse Iw. The ratio of stagnation impulse (Als) along the zero off-set line to

exit side-on impulse Iw are also listed in Table 1. The ratios AI/I, listed in Table 1 are plotted

in Figure 8 as AIA versus R/D. The results can be represented by a single curve, with the

exception of R/DT of 10, where the 11,000 Iw value is lower than that for the other exit conditions.

Based on this curve, values of (Al.) along the zero line can be predicted for any side-on exit

impulse ranging from 1,500 to 11,000 kPa-ms.

3.2.2 Results along the 1.5-diameter line. The stagnation impulses measured along the

1.5-diameter line for the three different pressure levels are listed in Table 2. The values are plotted

in Figure 9. The stagnation impulses versus distance for the three pressure levels show similar

trends, but the values of AI/Iw do not blend into a single curve when plotted as impulse ratios

versus distance. Compared to the zero line, the curves in Figure 9 for the three input impulses

show a dramatic decrease in stagnation impulse at the close-in stations 6.5, 10, and 15. Beyond

station 23, the three curves show attenuation of impulse with distance. Beyond station 35, values

of stagnation impulse at the 1.5-diameter offset appear to be the same as those measured along the

zero line.

9
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TABLE 1. Stagnation Impulse along the Zero Line.

Dist. I,=1,500 kPa-;ns 1,=5,000 kPa-ms I,=11,000 kPa-ms

Als, Als, Als,

R/DT kPa-ms AId1, kPa-ms AS/J, kPa-ms A15/1,

4.5 959 0.639 ... .........

6.5 518 0.345 1,863 0.373 3,627 0.330

10.0 479 0.319 1,566 0.313 2,407 0.219

15.0 296 0.197 1,137 0.227 2,238 0.204

23.0 142 0.095 460 0.092 1,212 0.110

35.0 54 0.036 172 0.034 478 0.044

48.0 17 0.011 43 0.009 126 0.012

54.0 17 0.011 ... ... 135 0.012

60.0 17 0.011 41 0.008 126 0.012

TABLE 2. Stagnation Impulse along the 1.5-Diameter Offset Line.

Dist. Iw=1,500 kPa-ms l,=5,000 kPa-ms 1,=11,000 kPa-ms

Als, Al5 , Al3,

R/DT kPa-ms Als/lw kPa-ms Al5/1w kPa-ms Al5/Iw

4.5 49 0.032 155 0.031 ......

6.5 87 0.058 117 0.023 368 0.034

10.0 72 0.048 192 0.039 511 0.047

15.0 86 0.057 270 0.054 608 0.055

23.0 99 0.066 153 0.031 518 0.047

35.0 25 0.017 160 0.032 368 0.034

54.0 4 0.009 72 0.015 133 0.012

11
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3.2.3 Results along the 3.0-diameter line. The stagnation impulses measured along the

3.0-diameter line are listed in Table 3. These values are plotted in Figure 10. The 3.0-diameter

line, when compared to the zero line, shows even a greater attenuation of stagnation impulse. If

we look at station 10, we can see that, for the low pressure shots, the values are 479 kPa-ms for

the zero line, 72 kPa-ms for the 1.5-diameter line, and 20 kPa-ms for the 3.0-diameter line. This

shows that, with an offset of only three diameters, the stagnation impulse is only four percent of

the zero-line values. These differences become even greater as we approach the tunnel exit.

3.3 Cube displacement measurements. In an effort to precisely map the jet-flow without

establishing more blast lines, it was suggested that small cubes of different density material be used

in place of stagnation probes. As shown in Equation 2, if the stagnation impulse and displacement

are known, the constant, k, can be determined, and the cube can be considered calibrated. Now, if

the cubes are placed at offset locations of 4, 5, 6, 7, 8, 9, or 10 diameters from the measured

displacement, the stagnation impulse can be calculated.

3 1.1 Oibe calibration. Cubes of two different sizes and three different materials were

manufactured. They were steel, aluminum, and wood, sized one-inch and three-eighths-inch. The

average weight of the three-eighths-inch steel cubes was 6.639 g; aluminum was 2.371 g; and wood

was 0.5563 g. The one-inch steel cubes weighed 125.9 g; the aluminum was 45.0 g and the wood

was 10.5 g. After the stagnation pressure versus distance was established along the zero line, then

the cubes were placed at selected distances along the zero line, the shock tube was fired, and the

displacements were measured. Care was taken to see that the cubes did not interfere with each

other and that measurable displacements were obtained. From the blast line stagnation impulse,

Als, at a specific distance, and the cube displacement, D, from that location, a relationship was

established where k = AI/4D. Because of the smallness of the shock tube and the sharp drop in

AI values from the zero line to the three-diameter offset, the three-eighths-inch cubes were used for

most of the offset measurements. A value of

k = .0202 psi-s or 0.252 kPa-s
ft.,A MIA

was established for the three-eighths-inch steel cubes, and

k = .006' psi-s or .076 kPa-s
ft.1,2  m

15



1000

U-
U?
LL
LL
0

c4 100
1w

<1 ~11000-- -

__j 5000~
-

1500
o 10-
Z A
0

F-

1.0 A A I

1.0 10 100

R/D T

Figure 10. Stagnation impulse (AQ, versus range (R) over

tunnel diameter (Dr) along the 3.0-diameter
line for three pressure levels.

16



TABLE 3. Stagnation Impulse along the 3.0-Diameter Offset Line.

Dist. I=1,500 kPa-ms Iw=5,000 kPa-ms I,, 11,000 kPa-ms

Als  Als Als
R/DT kPa-ms AIs/lw kPa-ms AIdIw kPa-ms Alv/w

4.5 1 0.0006 34 0.0067 ......

6.5 1 0.0006 31 0.0062 62 0.0056

10.0 20 0.0133 50 0.0099 60 0.0054

15.0 27 0.0180 44 0.0088 85 0.0074

23.0 50 0.0335 63 0.0103 188 0.0177

35.0 34 0.0227 131 0.0262 158 0.0144

54.0 5 0.0031 41 0.0082 123 0.0115

100.0 ............ 23 0.0020

TABLE 4. Stagnation Impulse Versus Offset
for I = 1,500 kPa-ms, Cube Data.

Impulse. kPa-ms

Distance along Offset diameters
zero line, dia. 0 1.5 3.0 4.0 5.0 6.0 7.0

12 400 95 22 9.5

18 220 115 67 40 26 17 11

24 142 87 55 40 29 22 16

30 75 55 41 34 28 23 19

36 52 38 28 23 19 15 13

44 38 32 27 24 22 20 17

54 17 15 13 ... ... ......

17



was established for the three-eighths-inch aluminum cubes. The constant, k, can be substituted in

Equation 2 to determine the stagnation impulse at the offset position.

3.3.2 Cube impulse measurements. The stagnation impulse values based on cube displacements

for various offset distances are listed in Table 4. Note that the distances along the zero line are

different from those in Table 3 because a grid was established consisting of 0.3048 metre squares

(one-foot squares) to assist in measuring displacement distances. From the cube displacements the

impulses were calculated for various offsets at selected distances in front of the tube for specific exit

conditions. The cube displacements were determined for the 1,500-kPa-ms exit impulse. When the

offset impulses Al for a given distance in front of the tube was plotted on semi-log paper as Als

versus offset, they fell along a straight line, which means that the decay from the zero line outward is

exponential. At the close-in station, the slope is very steep, but it becomes less steep as the distance in

front of the tube increases. An illustration of this trend is shown in Figure 11, where the data for 12,

24, and 36 diameters in front of the tube are plotted as Als versus offset.

3.4 Side-on and stagnation peak overpressure. The present quantity-distance criteria for the

location of buildings, roads, and houses is based on the peak side-on overpressure expected from the

accidental explosion of a high explosive. It is the purpose of this section to point out the magnitude of

the stagnation overpressure developed along the zero-, the 1.5- and the 3.0-diameter lines because of the

jet-flow emanating from the tunnel. The measured values of the side-on peak pressure along the zero

line and the stagnation pressure along the zero-, the 1.5-, and the 3.0-diameter offset lines are listed in

Table 5 for three different exit pressure levels. The values of side-on and stagnation pressure listed in

Table 5 along the zero line have been plotted in Figures 12, 13, and 14 to make comparisons at the exit

pressures of 503, 1,000, and 1,896 kPa.

For directly applicable comparisons of side-on and stagnation pressure, three side-on pressure

levels were selected. These are 24.1 kPa (3.5 psi) at the unbarricaded intraline distance, 15.9 kPa

(2.3 psi) the public traffic route distance, and 8.3 kPa (1.2 psi) the inhabited building distance. These

values are listed in Table 6 with a ratio of stagnation pressure-side-on pressure to show the magnitude

of the stagnation pressure when compared with the side-on pressure. The average magnitude of

stagnation versus side-on pressure is 7.3 times at the intraline distance, 6.1 times at the public traffic

route distance, and 4.0 at the inhabited building distance.

These ratios are significant and should be of concern in establishing any new quantity-distance

criteria. The magnitudes of the stagnation pressure shown are along the zero line, but in Table 5 it can

be seen that the effect, although not as great, is still evident at the 3.0-diameter offset line.
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TABLE 5. Side-on and Stagnation Peak Overpressure.

Offsets 0 1.5 3.0

Distance, AP, P,,, P,.. P., P,,
dia kPa kPa kPa kPa kPa

10 27.6 225.5 96.5 34.5 503

15 15.9 100.0 75.8 20.7

23 9.0 50.3 68.9 20.7

35 4.8 10.3 18.6 10.3

10 55.2 303.3 137.9 75.8 1, 000

15 31.7 200.0 103.4 34.5 "

23 17.9 151.7 137.9 41.4

35 10.3 48.3 48.3 34.5

54 6.2 11.7 11.7 11.7

10 101.4 379.2 303.4 186.2 1, 896

15 59.3 400.0 372.3 103.4 "

23 33.1 296.5 200.0 151.7 "

35 18.6 103.4 103.4 62.1

54 11.0 50.3 27.6 27.6
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TABLE 6. Side-on Pressure versus Stagnation
Pressure along the Zero-Degree Line.

Distance Exit pressure Side-on Stagnation Ratio
P., AP, PSTAG,

R/DT kPa kPa kPa PTAdJAP

11 503 24.1 179.3 7.4

15 " 15.9 100.0 6.3

24 8.3 38.6 4.7

19 1, 000 24.1 172.4 7.2

26 " 15.9 100.0 6.3

42 8.3 27.6 3.3

29 1, 896 24.1 172.4 7.2

40 15.9 89.6 5.6

65 8.3 33.1 4.0
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4. CONCLUSIONS

4.1 Magnitude and extent of jet-flow. Based on the transducer measurements, and cube

displacements, it can be concluded that the jet-flow exiting from the shock tube is high velocity, very

turbulent, relatively narrow, and can add significantly to target loading. The magnitude, in terms of

stagnation impulse, is a function of the exit energy or side-on impulse, offset from the zero radial, and

distance from the exit. The magnitude, in terms of peak stagnation pressure, is a function of the exit

pressurc, ofiet from the zero radial, and distance from the exit. These conclusions are based on the jet-

flow documented from a 2.54-cm-diameter shock tube with a helium driver. At this time there are

indications from recent tests using high explosives in scaled munition storage models that a high velocity

flow does exist along the zero radial but the magnitude has not been quantified.

Table 5 shows that the stagnation pressure drops rapidly with offset, and beyond 5 diameters

offset, there is little effect from the jet.

4.2 Shadowgraph documentation of the let-flow After the bulk of the report was completed, a

small program was initiated to determine whether the jet-flow could be documented with a shadowgraph

technique. The results of this work are presented in Appendix B.

Some conclusions based on the shadowgraph pictures are that the shockwave moves out far ahead

of the jet. At the lower exit pressure, - 500 kPa, the jet velocity at 7.5 diameters is 254 m/s but

decreases to 66 m/s at 37 diameters. The jet-flow is very turbulent and is not always symmetrical about

the zero line.
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APPENDIX A

Sample Pressure Traces for Shock Tube Jet-Flow
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APPENDIX A

Some sample traces are shown in this appendix that were unavailable at the time the report

was written. The traces will illustrate some of the waveforms and the features discussed in the

text.

Figure A-la shows the exit side-on overpressure and associated impulse for our lowest level

shock and driver overpressure, and Figure A-lb shows the exit stagnation overpressure and impulse

for this level. Figure A-ic shows the exit side-on overpressure and impulse for an intermediate

level shot. This is a typical level appropriate for the following series of traces that depict the flow

characteristics at distances beyond the "tunnel" exit. The exit side-on pressure waveform, following

the more-or-less ragged rise to the peak indicating the shock passage--will exhibit noticeable

"flattening" (depending on exit flow speed and Mach number) because the exit flow becomes sonic

due to the interactions there. This is followed by the steep decay due to the closed-end reflected

rarefaction wave arriving at the exit, then the gradual decay to ambient. It was of interest to note

that the tube's air shock exited supersonically at all three of our shock pressure levels. However,

the helium jet exited subsonically at the lowest shock level, near sonic at the intermediate level,

and supersonically at our highest shock level.

Figure A-2a shows an example of pressures along the zero-degree line, at the approximate

3-4, 2, and 1 psi levels of DDESB interest. It illustrates the side-on pressure behavior with

distance downrange from the exit. The corresponding stagnation pressures for the stations are

shown in Figure A-2b. Note the enhanced levels due to the jet-flow over stations 23 and 35. At

station 54 the jet-flow enhancement is essentially gone, but the flow-positive duration and, hence,

the loadings on a target, have increased.

The series of traces of Figures A-3 - A-5 show the jet-flow effects with offset from the

centerline, at stations 10, 23 and 54, respectively. These are again at the mid-level exit pressure of

our shots. The top trace is the side-on pressure, for reference. Then, in order down the page are

stagnation pressure at zero-, 1.5-, and 3.0-diameter offset. Note the dramatic decrease of level at

only 3.0-diameter offset over stations 10 and 23. Levels are pretty much that of the side-on levels.

These results indicate that the jet-flow is quite narrow but also significant. At station 54 where the

side-on level is below 10 kPa (1.5 psi), the jet-flow has apparently broadened, and levels are even

from zero to 3.0 liameters. Some later tests were conducted to observe the jet-flow

photographically. (See Appendix B.)
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APPENDIX B

Shadowgraphs of Shock Tube Jet-Flow
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APPENDIX B

A limited number of shadowgraphs have been made to pictorially document the velocity and

size of the jet-flow exiting the shock tube at the lower pressure level. These shadowgraphs should

prove useful in delineating the jet-flow extent and should assist in corroborating the measurements

by pressure gages and displacement cubes. The structure and characteristics of jets are objects of

continuing study, due to their diverse applications. However, it appears that most of the

information is confined to a region close to the jet exit. For our purposes here we have observed

the region out to 40 exit diameters, where photographs of the jet-flow seem rather uncommon. We

note the excellent shadowgraphs by Schmidt and Shear' of the muzzle-blast jet-flow to 50 diameters

outward. However, muzzle jet exit pressures may range from 100-300 atm typically, some 20 to

30 times the levels used in this work. Thus, due to the exit mach number dependence of the jet-

flow, features are not directly comparable.

Apparatus and Setup. Because of the small scale of the jet involved, a single spark source, a

Hi Voltage Components, Inc., Model SS55P, was used. The unit was placed 1.09 m (42.5 in)

above the ground plane/platform, which presented the most convenient geometry for the

photography. The one source was deemed sufficient to illuminate approximately 24 diameters of

the flow extent in enough detail for analysis. Additionally, it seemed appropriate to concentrate

efforts on the lowest level flow, to be assured of adequate lighting and exposure. Setting up for

the shadowgraphs involved elevating the shock tube to maintain a relative position with respect to

the three 20 x 25-cm (8 x 10-in) film holders and the covering glass sheet, simulating a portion of

the ground plane. The spark source with built-in power supply, triggered by an Orthometrics Type

308b time-delay unit, which receives the signal from the shock tube's exit pressure gage, constitutes

the simple shadowgraph setup. Filmholders could be offset from the centerline position to cover

the flow extent more fully. In Figure B-1 a sketch of the setup and location of the filmholders in

relationship to the tube exit is shown.

Results. At a single condition corresponding to the lowest driver pressure, with exit pressure

from 500-600 kPa, a number of shots were fired to give shadowgraphs at 1.5, 3.0, 4.0, 5.0 and

6.25 ms after shock exit. Some sample shadowgraphs are shown in Figure B-2. The 20 x 25-cm

film negatives have been printed at a reduced size for inclusion in this report. In Figure B-2a the

jet-flow is shown at a delay time of 3.0 ms on film position 2. The back edge of the film was

21.9 tube diameters from the tube exit. With the short delay times, filmholder 2 was centered

along the tube axis or zero line.
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In Figure B-2b the jet is shown at a delay time of 4.0 ms where the filmholder has been offset

with one film edge aligned with the zero line. The jet displays a greater forward expansion than

lateral expansion.

In Figure B-2c the delay time is 6.25 ms, and the filnholder is 3 with the back edge located at

31.1 diameters. The jet velocity has decreased at this distance and also shows a considerable lateral

expansion.

Tracings of the jet boundaries from reduced scale prints of the shadowgraph negatives are

shown in Figure B-3, with distances shown from the tube end as well as laterally. The gaps

between the traces, which have been connected with dotted lines, are due to the finite widths of the

film holders along the actual film. Observation begins beyond 12 tube diameters since our interest

was in the farther region of the jet. It is interesting to note the close-in behavior of the jet. At

1.5 ms after shock exit, the jet-flow has traveled to approximately 15 diameters but extends laterally

to less than 4 diameters half-width. Also, the jet width exhibits an apparent pulsation in width

with time.

Farther out, onto films 2 and 3, the jet width still maintains its narrow width to 4.0 ms, then

diffuses laterally as the forward moving gases slow down and retard the advance of the following

gas, forcing it to the side. It seems plausible to associate the significant loading effects of the jet-

flow with the jet when it is narrow and concentrated, which is, according to the shadowgraphs, up

to a distance of 28-30 diameters from the tube exit.

Such a picture is in agreement with the data of Table 5 for the Pw = 500 kPa level of the

shadowgraph and for the corresponding curves at the scaled impulse for Iw = 1500 kPa-ms of

Figures 7, 9, and 10. These figures give the stagnation pressure and impulse containing the jet

contribution to loadings. One sees at the zero-, 1.5-, and 3.0-diameter offset lines significant

loadings out beyond the 23-diameter station, but a sharp drop-off at the 35-diameter station. Thus,

with the new shadowgraphs of the flow out to 40 diameters, we feel we have confirmed the narrow

directivity and extent of the jet-flow and demonstrated the enhancement of loadings due the jet-

flow.

The arrival times of the jet at measured distances for different delay times have been plotted in

Figure B-4. From these data points a curve was established, and it was possible to calculate the

average jet-front velocity between selected distances. These calculated average velocities are listed

in Table B-1 where a dramatic decrease in velocity can be seen as the distance increases.
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TABLE B-1. Average jet-front velocities.

Distance, Average Mid-point,
diameters Velocity, diameters

rn/s

0- 15 254 7.5

15 - 20 254 17.5

20 - 25 116 22.5

25 - 30 129 27.5

30- 35 90 32.5

35 -38 66 37.0
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